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Figure 1. Specular reflections rendered with environment mapping (left), ray tracing (middle), and our method 
(right). Environment mapping produces incorrect reflections that fail to convey the reflected object’s proximity to 
the reflector surface (e.g. table leg reflected in floor, floor reflected in vase). Our method renders reflections compa-
rable to those rendered with ray tracing. The frame rate for our method is 15fps, compared to 1.1fps for ray tracing 
(i.e. Optix with BVH acceleration). 

Abstract—The feed-forward pipeline based on projection followed by rasterization handles the rays that leave the eye efficiently: 

these first-order rays are modeled with a simple camera that projects geometry to screen. Second-order rays however, as for 

example those resulting from specular reflections, are challenging for the feed-forward approach. We propose an extension of 

the feed-forward pipeline to handle second-order rays resulting from specular and glossy reflections. The coherence of second-

order rays is leveraged through clustering, the geometry reflected by a cluster is approximated with a depth image, and the color 

samples captured by the second-order rays of a cluster are computed by intersection with the depth image. We achieve quality 

specular and glossy reflections at interactive rates in fully dynamic scenes. 

Index Terms— Specular reflections, glossy reflections, fully dynamic scenes, feed-forward rendering, interactive rendering 

——————————      —————————— 

© 2013 IEEE        Published by the IEEE Computer Society 

 



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID 

 

 

1 INTRODUCTION

ost interactive computer graphics applications ren-
der 3-D scenes in feed-forward fashion, by projec-
tion followed by rasterization. At a fundamental 

level, the approach is efficient since projection is a straight 
forward way to avoid considering ray/geometric-
primitive pairs that do not produce an intersection. By 
comparison, the ray tracing pipeline requires acceleration 
schemes to avoid considering geometric primitives that 
do not intersect a given ray. However many scenes of 
interest contain specular reflective surfaces which extend 
and perturb first-order rays. The resulting higher order 
rays cannot be modeled with a simple camera that pro-
vides fast projection, and consequently the classic feed-
forward pipeline cannot render reflections. The palliative 
approach for rendering reflections in interactive graphics 
applications is to approximate the reflected scene with a 
panoramic image, e.g. a cube map, and to look up the 
reflected rays into the cube map. This is a drastic approx-
imation that produces large errors for reflected objects 
that are close to the reflector surface (Figure 1, left). 

In this paper we propose extending the feed-forward 
pipeline to handle second-order rays. Our method is 
based on the fact that in the case of specular reflections 
second-order rays are locally coherent. We take ad-
vantage of this coherence by grouping second-order rays 
of nearby pixels into clusters. Although the rays in a clus-
ter are coherent, they usually do not pass through a 
common point and thus they cannot be modeled with a 
conventional pinhole camera. One approach is to reduce 
the size of clusters until the pinhole approximation pro-
duces acceptable errors, but this is inefficient for complex 
reflectors that require small clusters and thus a large 
number of cameras.  

Another approach is to model clusters of second-order 
rays using more powerful non-pinhole camera models, but 
such cameras introduce costly projection and non-linear 
rasterization, and even a small ray approximation error 
produces reflection discontinuity between clusters. Instead 
of approximating the rays of the cluster, we approximate the 
geometry reflected by the cluster. The reflected geometry is 
approximated by rendering a depth image for each clus-
ter. The color samples captured by the second order rays 
of a cluster are computed by intersecting the rays with the 
cluster’s depth image. 

Our method produces quality reflections at interactive 

rates (see Figure 1 and accompanying video). No pre-
computation is required, thus our method supports fully 
dynamic scenes. Second-order rays are clustered on the 
fly, directly in the output image, which brings support for 
general scenes, with large, complex, and numerous reflec-
tors. The reflected scene geometry is approximated effi-
ciently, on demand: our method only approximates the 
geometry needed for the reflections in the current frame, 
the approximation is done at the appropriate level of de-
tail, and the approximation is done automatically, with-
out a prerequisite partitioning of reflected geometry into 
objects. Our method also allows approximating glossy 
reflections (Figure 2) by intersecting the cluster depth 
image with multiple reflected rays per cluster pixel. 

Our method essentially approximates second-order 
rays with one additional feed-forward rendering pass for 
each cluster. Although, in theory, our method could sup-
port higher-order rays, handling such rays is less efficient 
since they are less coherent, which translates into a larger 
number of clusters. Whereas incorrect first-order reflec-
tions are easily noticeable and disturbing, higher-order 
reflection inaccuracies are usually difficult to detect and 
as such they do not warrant the additional cost—we ren-
der higher order reflections using environment mapping. 

The next section discusses prior work. Section 3 dis-
cusses our method in detail. Section 4 presents and dis-
cusses results. Section 5 concludes the paper and sketches 
directions for future work. 

2 RELATED  WORK 

The problem of rendering specular reflections at interac-
tive rates has been approached from many directions. 

Image based rendering & caching 
One group of methods employs pre-computed or pre-
acquired color samples. Such classic image-based render-
ing methods include the light field [20], the lumigraph 
[19], and view dependent texture mapping [29]. The lu-
migraph was modified from storing color samples to stor-
ing a ray to ray mapping, which allows changing the re-
flective and reflected object independently [21]. An out-
side-looking-in parameterization of the light field has 
been proposed by revolving a construction camera 
around the reflective object [22]. The environment light 
field map [18] goes in the opposite direction of achieving 
an inside-looking-out parameterization of the light field. 

The idea of rendering acceleration by reusing pre-
computed color has recently evolved into irradiance [37-
39] and radiance [40-41] caching. Irradiance caching 
methods reuse shading results from nearby pixels and are 
efficient, but they only apply to diffuse surfaces. Radiance 
caching [40] overcomes the diffuse surface limitation by 
storing full incoming radiance, which is interpolated be-
tween pixels taking into account the pixels’ BRDFs. Pre-
convolved radiance caching [41] accelerates radiance 
caching by storing pre-computed shading expressions per 
surface as opposed to per pixel, at the cost of losing high-
frequency detail. 

M 

  

Figure 2. Glossy reflections rendered with our method, for 

two levels of glossiness, at 5 fps. 
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These caching approaches are ill-suited for rendering 
specular reflections as the appearance of specular surfaces 
changes substantially even with a small change in view-
point, which leads to impractically large ray databases. 
Moreover, dynamic scenes are challenging for image-
based rendering methods since any change in the scene 
makes the ray database obsolete and re-computing the 
ray-database is too costly to be done per frame. 

Ray tracing 
The ray tracing pipeline [1, 2] naturally supports render-
ing reflections. The major concern is performance. The 
brute force approach of intersecting every scene triangle 
with every reflected ray is prohibitively expensive and 
the goal is to avoid performing intersection tests that do 
not yield an intersection. A multitude of acceleration 
schemes have been developed, including level of detail 
[5], KD-trees [3], bounding volume hierarchies (BVH) [4], 
and beam tracing [43], running on the CPU [11, 12] and 
on the GPU [13-15, 43]. Rendering specular and glossy 
reflections with ray tracing poses several challenges.  

One challenge is the large number of per-pixel rays 
needed to achieve adequate reflection antialiasing. When 
the solid angle subtended by the reflected rays at a pixel 
is large, a large number of rays are needed for adequate 
sampling of reflected geometry. Another challenge is 
posed by glossy surfaces. Specular, mirror-like surfaces 
have coherent normals and therefore generate coherent 
reflected rays, which can be adequately sampled with a 
small number of per-pixel rays. Glossy surfaces however 
generate incoherent reflected rays and they require a 
large number of rays per pixel. A third important chal-
lenge is that, in the case of dynamic scenes, the data struc-
ture used to accelerate ray tracing has to be re-computed 
on the fly. For example, the Optix ray tracer used to ren-
der the comparison images in Figure 1 spends 910ms for 
the living room and 260ms for the bathroom per frame to 
re-construct its BVH tree. 
 

As GPUs remain primarily feed-forward rendering 
machines, researchers have attempted to extend the feed-
forward pipeline to rendering reflections. There are two 
fundamental options: processing the reflected triangles 
with the feed-forward pipeline, or processing the reflective 
triangles. 

Feed-forward processing of reflected triangles 
Consider a triangle that is first reflected before being pro-
jected onto the output image. Processing such a reflected 
triangle with the feed-forward pipeline requires overcom-
ing two challenges. First, one has to be able to project on-
to the image plane a vertex that is first reflected. Second, 
one has to perform a non-linear rasterization of the re-
flected triangle (i.e. curved reflected triangle edges, non-
linear variation of rasterization parameters within the 
triangle). The second challenge can be overcome by sub-
dividing the reflected triangle until conventional, linear 
rasterization provides an acceptable approximation. 
However, the first challenge is difficult to overcome. If 
the reflector were a sphere, projecting a reflected vertex 
requires solving a quartic. For general reflectors modeled 

with a triangle mesh no closed-form projection exists. 
The problem of projecting reflected vertices has been 

addressed in several ways. One method considers the 
reflected space subdivision induced by the reflector’s tri-
angles; a reflected vertex is projected by looking up the 
subdivision cell that contains it; the lookup is accelerated 
using an approximate representation called an explosion 
map [27]. Another method [8] leverages the coherence of 
reflected rays and approximates a group of reflected rays 
with a conventional planar pinhole camera. The planar 
pinhole cameras are stored at the leafs of a BSP tree that 
defines a sample-based camera. The sample-based camera 
projects reflected vertices with bounded error. A third 
method searches for the projection of a reflected vertex 
through a local search executed on the GPU [28]. All these 
methods scale poorly with reflector complexity and with 
the number of reflectors. Complex and numerous reflec-
tors increase the complexity of the explosion map, of the 
sample-based camera, or of the search for the reflected 
vertex projection, and increase the number of projections 
for a given triangle due to multiple projections. 

Feed-forward processing of reflective triangles 
The other option for rendering reflections by projection 
followed by rasterization is to process the triangles that 
form the reflective surface. The vertices of the reflective 
triangle are projected as usual, vertex normals are inter-
polated over the projected triangle, and per-pixel reflect-
ed rays are computed straightforwardly. However, find-
ing the color of the samples captured by the reflected rays 
is challenging. To avoid the complexity of ray tracing the 
scene in search of the reflected ray color, several methods 
resort to approximating the reflected scene geometry. 

Environment mapping makes the drastic assumption 
that all reflected geometry is infinitely far away from the 
reflector [6, 7]. With this assumption, the reflected scene 
can be modeled with an environment map (typically pa-
rameterized as a cube map), and the reflected ray is simp-
ly looked up using solely its direction, ignoring the actual 
3-D point from where it emanates. The reflection is anti-
aliased through mipmapping in the environment map. 
The method scales well with reflector complexity and 
multiple reflections are handled at no extra cost—the fact 
that multiple reflected rays intersect the same region of 
the environment map has no consequence on perfor-
mance. Due to its low cost and robustness, environment 
mapping is the method of choice for rendering reflections 
when performance is at a premium. However, when the 
reflected object is close to the reflective surface, environ-
ment mapped reflections are wrong, failing to convey the 
object’s proximity to the reflective surface (Figure 1). 

Environment maps have been extended to approxi-
mate single- and multiple-lobe BRDF glossy reflections 
[23, 24]. In an effort to improve reflected geometry ap-
proximation quality, environment maps have been en-
hanced with per-pixel depth [25]. However, the resulting 
environment map only captures surfaces visible from its 
center which leads to serious errors in the reflection due 
to missing samples as many reflected rays intersect sur-
faces that are not part of the environment map. 

In order to reduce the missing sample errors one op-
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tion is to subdivide the reflected scene into objects and to 
approximate each object individually for each reflector, 
using a billboard or a conventional depth image at first 
[26], and later using a non-pinhole depth image [9]. Good 
reflections are obtained, but subdividing the scene into 
reflected objects is not always possible and, when it is 
possible, the approach does not scale with scene complex-
ity. 

A second option is to approximate scene geometry 
with more powerful depth images. Layered depth images 
(LDIs) allow for a variable number of samples along a 
conventional camera ray [33] and they have been used to 
accelerate indirect illumination computation [34, 35]. Alt-
hough LDIs avoid the redundancy of overlapping depth 
images, LDI construction is laborious (requiring depth 
peeling or merging overlapping depth images), which 
precludes their use in the context of dynamic scenes 
where LDIs would have to be constructed for every frame. 

A third option is to use a flexible non-pinhole camera, 
such as the graph camera [36], to capture the entire scene 
in a single-layered image [9]. The graph camera offers 
closed-form projection and the graph camera depth image 
can be constructed (i.e. rendered) for every frame. How-
ever, graph camera constructors are limited to simple 2-D 
mazes with right angle turns, and therefore graph camer-
as cannot approximate well the reflected rays resulting 
from specular reflections in complex scenes like the ones 
considered in our paper (Figure 1). 

Approximating reflected geometry has also been pur-
sued by researchers aiming to accelerate ray tracing. Ap-
proximations include geometry fields that can be looked 
up to estimate the reflected ray color [16] and mip-
mapped geometry images [17]. These approximations 
cannot be computed on the fly which precludes fully dy-
namic scenes with deforming objects. 

Our method falls in this category of methods that 
feed-forward process reflective triangles and that approx-
imate reflected geometry to simplify reflected ray / ge-
ometry intersection. Our method computes a quality ap-
proximation of the reflected scene for each frame which 
results in quality reflections for fully dynamic scenes, and 
it does not require partitioning the reflected scene into 
objects, which brings scalability with scene complexity. 

3 ALGORITHM 

Consider a scene that contains diffuse surfaces, i.e. surfac-
es with perfectly diffuse reflectance, specular surfaces, i.e. 
surfaces whose reflectance model is well approximated 
by a combination of a perfectly specular component and 
of a diffuse component, and glossy surfaces, i.e. surfaces 
whose reflectance model is well approximated by a com-
bination of a single-lobe symmetrical BRDF and of a dif-
fuse component. The scene is modeled with triangles. 

 
3.1 Algorithm overview 

Given a desired view V, the scene S is rendered from V 
with the following algorithm. 

1. Render S from V. For every pixel p record: 
        a. Diffuse component p.rgbd 

        b. Specular and glossiness levels p.s and p.g 
        c. Normal and depth p.n and p.z 
        d. Reflective object ID, p.rID 

2. Cluster non-diffuse pixels 

3. For every cluster C, finalize reflections as follows 
        a. Construct cluster camera K 
        b. Render S with K to obtain cluster depth image D 
        c. For every pixel p in C 
                i. For every reflected ray ri 
                         Intersect ri with D, i.e. di = ri ∩ D 
                ii. Set non-diffuse component p.rgbn = G(di, p.g) 
                iii. Pixel color p.rgb = LERP(p.rgbd, p.rgbn, p.s) 

The algorithm has three main steps. The first step takes a 
rendering pass over the scene to compute the diffuse 
component for every pixel, to set the pixel specular and 
glossiness levels, to compute the pixel normal and depth 
by conventional interpolation of vertex values, and to set 
the ID of the reflective object to which the pixel belongs. 
The specular level of a pixel p.s ranges from 0 for perfect-
ly diffuse to 1 for perfectly specular. The glossiness level 
of a pixel p.g ranges from 0 for perfectly specular, mirror-
like reflections, to 1 for a glossy surface with the widest 
BRDF lobe. The second step groups neighboring non-
diffuse pixels with similar reflected rays into clusters as 
described in Section 3.2. The third step computes the re-
flections and finalizes the frame one cluster at the time. 
For each cluster, a planar pinhole camera is constructed to 
encompass all the reflected rays of the cluster as de-
scribed in Section 3.3 (step 3.a above). Then the geometry 
reflected by the cluster is approximated by rendering the 
scene with the cluster camera (step 3.b).  

The resulting depth image is used to finalize the com-
putation of the color for the pixels in the cluster (step 3.c). 
For each pixel in the cluster, the depth image is intersect-
ed with reflected rays, as described in Section 3.4 (step 
3.c.i above). For perfectly specular, mirror-like surfaces 
(i.e. a p.g of 0), there is a single reflected ray per pixel, 
defined by the surface point, the pixel normal, and the 
eye position. The larger the glossiness factor p.g, the larg-
er the number of reflected rays. The non-diffuse compo-
nent of the current pixel is computed by blending the col-
or samples di found at the reflected ray / depth image 
intersections based on the glossiness level p.g, using func-
tion G(di, p.g), which corresponds to an application cho-
sen BRDF. The final pixel color is computed by linearly 
interpolating the diffuse and non-diffuse pixel color com-
ponents with weights defined by the pixels specular level 
p.s (step 3.c.iii). 
3.2 Non-diffuse pixel clustering 

The first pass over the scene (step 1 in Section 3.1) com-
putes the pixel normal which translates to a reflected ray. 
We take advantage of the coherence of per-pixel reflected 
rays by grouping nearby non-diffuse pixels into clusters. 
We have designed an algorithm for clustering non-diffuse 
pixels based on the following considerations: 

a. There should be as few clusters as possible, since 
each cluster requires rendering the scene to construct 
its depth image. 
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b. The cluster should be small enough such that a con-
ventional planar pinhole camera constructed for the 
cluster captures the samples reflected by the cluster. 

c. Clustering should be fast as it runs for each frame. 

We assign non-diffuse pixels directly to their cluster by 
binning pixel normals into a 3-D array of bins whose reso-
lution is adapted for each frame to achieve a good 
tradeoff between number of clusters and reflected ray 
modeling fidelity. Our algorithm proceeds as follows. 

Offline 
1. Partition non-diffuse triangles into reflective objects 

Online, once per frame 
2. For every reflective object R 
        a. Set normalized screen area aR 
3. Compute the number of visible reflective objects, nv 

4. For each non-diffuse pixel p, assign p to cluster (i, j, k) 
        a. i = MAXTHETABINS * p.n.θ / 360o * aR / nv 
        b. j = MAXPHIBINS * p.n.φ / 180o * aR / nv 
        c. k = p.rID 

Binning normals based solely on their orientation can 
lead to grouping distant pixels in the same cluster. For 
example in Figure 1 (top row), the vase, the teapot, and 
the lamp have patches with identical normals. Grouping 
all three patches in the same cluster is inefficient since it 
would result in unnecessarily large depth images. This 
problem could be avoided by building contiguous clus-
ters in bottom-up quadtree fashion in the output frame, 
but such an approach is slow.  

Step 1. We group non-diffuse triangles offline into ob-
jects (step 1), and we prevent a cluster from spanning 
multiple reflective objects. This is done using the reflec-
tive object ID as a third dimension of the array in which 
normals are binned, in addition to the normal’s spherical 
coordinates θ and φ. The partition of non-diffuse triangles 
follows the natural subdivision of the scene into objects. 
Figure 3 illustrates the 25 and 15 reflective objects for the 
living room and the bathroom scenes (Figure 1), respec-
tively. We render reflections only for the non-diffuse pix-
els visible in the output frame—the offline partitioning of 
the scene into reflective objects is only used for fast clus-
tering. Whereas the number of reflective objects is fixed, 
the resolution along the θ and φ dimensions of the array 
of bins is set online, for each reflective object and for each 
frame. The θ and φ dimensions of the bins depend on two 

quantities.  
Step 2. One quantity, aR, measures the footprint of the 

reflective object in the output frame, as the percentage of 
output frame pixels where the reflective object is visible.  

Step 3. The second quantity is the number of reflective 
objects nv that are visible in the output frame, computed 
as the number of reflective objects whose aR is not 0 (step 
3).  

Step 4. Each pixel is assigned to a cluster based on its 
normal and on the index of the reflective object to which 
it belongs. The maximum possible θ and φ resolution 
MAXTHETABINS x MAXPHIBINS is modulated using aR 
and nv. MAXTHETABINS and MAXPHIBINS are con-
stants that we set to 13 and 8, respectively, for all exam-
ples shown in the paper. The larger the relative footprint 
of the object, the finer the bins, and the larger the number 
of reflective objects, the coarser the bins. Although the 
maximum number of bins for the two scenes is 25 x 13 x 8 
= 2,600 and 15 x 13 x 8 = 1,560, respectively, the number 
of clusters is given by the number of bins that are not 
empty. For example, in the case of a single large sphere 
that covers the entire screen, the maximum number of 
clusters is 1 x 13 x 8 / 2= 52, which accounts for the fact 
that only half of the sphere is visible. 

Figure 4 illustrates the clusters used to render the re-
flections in the four images from Figures 1 and 2. The 
floor defines a single cluster. The table top and the floor 
define two different clusters, although they are oriented 
the same way. The vase defines more clusters when seen 
in more detail (top right versus top left). The spherical 
coordinate system used over-samples clusters near the 
pole (see top right image in Figure 4), a small disad-
vantage outweighed by the advantage of its simplicity. 
Clustering based on normals as opposed to based on re-

  

Figure 3. Visualization of reflective objects. Diffuse objects 

are shown in grey. 

 
123 clusters 

 
38 clusters 

 
121 clusters 

 
53 clusters 

Figure 4. Visualization of pixel clusters used to render the 

reflections in Figs 1 and 2. Diffuse pixels are shown in grey. 
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flected rays avoids over-clustering at the silhouette of 
reflective objects and has good frame to frame stability. 
 
3.3 Cluster camera construction 

Once clustering is complete, reflections are computed for 
one cluster at the time. The first step is to construct a con-
ventional planar pinhole camera for the current cluster 
that allows approximating the geometry reflected by the 
cluster. We use a conventional camera for three funda-
mental reasons. First, conventional camera allows render-
ing the scene geometry efficiently to obtain a depth image 
that approximates the reflected geometry. Second, reflect-
ed rays project to straight lines onto depth images con-
structed with conventional cameras, which makes ray / 
depth image intersection efficient. Third, a conventional 
camera models the reflected rays of a planar cluster per-
fectly. Planar specular surfaces abound in man-made sce-
ne and handling them well is an important reflection ren-
dering algorithm design consideration. 

The goal is for the camera to capture all the samples 
reflected by the cluster. One consideration is for the cam-
era to have enough field of view, such that the camera 
frustum contains all the reflected rays of the cluster. A 
second consideration is for the rays of the camera to ap-
proximate the reflected rays of the cluster as closely as 
possible in order to avoid disocclusion errors in the reflec-
tion. A disocclusion error occurs when a reflected ray 
intersects a surface at a sample that is missing from the 
depth image rendered with the cluster camera. The cam-
era cluster is constructed as follows (Figure 5). 

1. Set image plane through 3-D point Pc and normal nc 
        a. Pc =∑Pi/N 
        b. nc  = ∑ni/N 
2. Set far plane at distance D 
3. Set center of projection ec 
        a. Compute e0 = Reflect(e, Pc, nc) 
        b. Displace e0 along e0Pc: ec = e0 + (Pc – e0)f 
4. Set the image frame aabb 
5. Set the image resolution w x h 

Step 1 The image plane of the cluster camera is de-
fined by the cluster centroid and the cluster normal. The 
cluster centroid is the average of the 3-D reflector surface 
points over all cluster pixels (N is the number of pixels in 
the cluster). The cluster normal is the average over all 
cluster pixel normals. The image plane also serves as near 
plane. Figure 5 illustrates cluster camera construction in 
2-D, for clarity. A curved reflector is partitioned into a 
cluster between points P1 and PN, where the surface nor-
mals are n1 and nN and the reflected rays are r1 and rN. The 
output frame center of projection is e. 

Step 2 For specular reflections, the far plane of the 
cluster camera is set to be parallel to the image plane at a 
distance D equal to the scene diameter for specular reflec-
tions (Figure 5). For glossy reflections the far plane is set 
closer to the image plane, as described in Section 3.5. 

Step 3 The center of projection ec of the cluster camera 
is defined such that the cluster camera rays approximate 
the reflected rays of the cluster as well as possible. We 
construct ec such that the axis aligned bounding box aabbn 
of the projections of the near reflected ray endpoints be of 
similar size to the axis aligned bounding box aabbf of the 
projections of the far reflected ray endpoints. In Figure 5, 
the near endpoints of reflected rays r1 and rN are P1 and 
PN; the far endpoint for ray rN is QN, and for r1 it is Q1 (ac-
tual location of Q1 is not shown to keep the figure com-
pact). 

We set ec in two steps. First, the output frame center of 
projection e is reflected over the cluster camera image 
plane to e0 (Figure 6). Then, ec is computed by displacing 
e0 towards or away from the centroid of the cluster Pc. The 
displacement is controlled by a scalar value f, which is set 
such that the diagonal of the 2-D AABB aabbf be approxi-
mately equal to the diagonal of the 2-D AABB aabbn. We 
set f as shown in Equation 1, where dn is the length of the 
diagonal of aabbn when ec is at e0, df is the length of the 
diagonal of aabbf when ec is at e0, and dF is the length of the 
axis aligned bounding box of the far endpoints of the re-
flected rays on the far plane. As ec moves on e0Pc, the pro-
jections Pi’ of points Pi do not change much, as points Pi 
are close to the image plane. Consequently, the length of 
the diagonal of aabbn is approximately constant, and 
Equation 1 approximates it to the length dn it has when ec 
= e0. On the other hand, the length of the diagonal of aabbf 

P1

PN

Pc nc

n1

nN

far plane

near plane
im

age planereflector

r1

rN
QN

Q1

e

 

Figure 5. Construction of the image plane (also the near plane) 

and of the far plane for the cluster camera. 

Q1'

PN'

Pc'

e0

P1'

QN'
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QN
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e
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Figure 6. Construction of the eye e0 of the cluster camera. 



WANG ET AL.: SECOND-ORDER FEED-FORWARD RENDERING FOR SPECULAR AND GLOSSY REFLECTIONS 

 

is sensitive to the position of ec on e0Pc. Equation 1 sets ec 
such that the length of the diagonal of aabbf is equal to dn. 

)(
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nFf

fFn

ddd
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Figure 6 illustrates the case of the convex reflector 
from Figure 5. Points Q1’, P1’, Pc’, PN’, QN’ correspond to 
the cluster camera image plane projection from e0 of the 
corresponding points from Figure 5. The length of seg-
ment Q1’QN’ corresponds to df, that of P1’PN’ corresponds 
to dn, and that of Q1QN corresponds to dF. At e0 aabbn is 
smaller than aabbf, i.e. df > dn. Since dF > df and dF > dn, 0 < f 
< 1. The displacement moves ec from e0 towards PC. This 
decreases aabbf with respect to aabbn. The cluster camera 
with center of projection ec approximates the reflected 
rays better than a cluster camera with center of projection 
at e0. The direction of ecP1’ is closer to the direction of r1 
than is the direction of e0Q1’. 

For a cluster corresponding to a planar reflector, all re-
flected rays intersect at e0, and consequently the cluster 
camera should use e0 as a center of projection. Such a clus-
ter camera models the reflected rays perfectly and there 
are no disocclusion errors. For a planar reflector the near 
and far endpoints project from e0 to the same image plane 
point. Consequently aabbn and aabbf are identical, dn = df, 
and, according to Equation 1, f becomes 1, which implies 
that ec is set to e0 as desired. 

Step 4 The image frame is set at by projecting the near 
and far reflected ray endpoints with the finalized center 
of projection ec. The image frame is the axis aligned 
bounding box of these projections. This way the cluster 
camera has a field of view that is guaranteed to encom-
pass all the reflected rays of the cluster (orange shaded 
area in Figure 6). 

Step 5 The image resolution is set to match the resolu-
tion of the cluster. The 3-D points of a few pairs of cluster 
pixels that are either in consecutive rows or in consecu-
tive columns in the output image are projected with the 
cluster camera. The average distance between the pairs of 
projections are used to define the pixel size p. The cluster 
camera resolution is defined as w x h, where w = aabb.w / p, 
and h = aabb.h / p. 
 
3.4 Reflected ray / depth image intersection 

Once the camera cluster is complete, the scene is rendered 
with it to obtain the cluster depth image. A depth image 
is a powerful approximation of geometry: the approxima-
tion can be constructed quickly through conventional 
rendering to obtain a frame buffer with color and depth 
per pixel, the depth image captures geometry with con-
trollable level of detail, and one can intersect a depth im-
age with a single ray efficiently. The efficient intersection 
between a ray and a depth image is well known—it has 
been used in inverse image-based rendering by 3-D warp-
ing [31], in rendering surface geometric detail [32], and in 
rendering reflections [26]. We briefly sketch the algorithm 
here for completeness. 

Given a ray r and a cluster depth image DI, the clos-
est .intersection between r and DI, if any, is found by pro-
jecting r onto DI. Let r’ be the projection of r  with the 

cluster camera that rendered DI; r’ is traversed from the 
near endpoint to the far endpoint with one-pixel steps. 
Let a and b be the previous and current steps on r’.  If the 
2-D segments [(0, zra), (1, zrb)] and [(0, DI[a]), (1, DI[b])] 
intersect, and intersection is found, and the search stops. 
zra is the depth along the ray at a, and DI[a] is the depth in 
the depth image at a. A measure of depth that is linear in 
screen space is used, i.e. proportional to 1/z. If the end of 
r’ is reached there is no intersection. 

 
3.5 Glossy reflections 

A point on a glossy surface does not reflect along a single 
direction, but rather along a solid angle centered at the 
specularly reflected ray (i.e. the ray obtained by reflecting 
the output image ray over the point’s normal). We sup-
port glossy reflections with the following three modifica-
tions to the algorithms described above for specular re-
flections. 

(1) The field of view of the cluster camera has to be 
constructed to take into account the non-zero solid angle 
subtended by a glossy reflected cone. We do this by ex-
tending the field of view computed at Step 4 of the cluster 
camera construction algorithm (Section 3.3) with the an-
gle of the reflected cone. This way the resulting cluster 
depth image captures the additional geometry reflected 
by the glossy cluster. 

(2) Glossy surfaces only have well defined reflections 
close to the reflector surface. We take advantage of this 
fact by setting the far plane of a cluster camera construct-
ed to render a glossy reflection based on the glossiness 
level. For surfaces that are more matte, the far plane can 
be closer to the near plane, compared to surfaces that are 
more specular. Bringing in the far plane as much as pos-
sible reduces the amount of geometry that has to be re-
flected. When no object is sufficiently close to a glossy 
surface, the resulting cluster depth image is empty, and 
no subsequent ray / depth image intersections are need-
ed. To provide for a gradual fade away of a glossy reflec-
tion as a reflected surface moves progressively farther 
from the glossy surface, the glossy reflection is blended 
with the diffuse color of the surface with a weight that 
decreases to 0 as the distance to the reflected surface be-
comes the distance to the far plane. 

(3) Glossy reflections require multiple reflected rays 
per reflector surface point. We intersect several reflected 
rays with the cluster depth image, for each glossy surface 
pixel. The reflected rays sample uniformly a cone with 
apex at the surface point and with an axis defined by the 
reflected ray generated by the pixel normal. The solid 
angle covered by the cone depends on the glossiness level. 
For surfaces close to specular, the angle is small, and 
therefore the number of rays is small. For a more matte 
surface the angle is larger requiring additional rays. For 
the examples shown in this paper the number of rays per 
glossy pixel ranges from 8 to 49. 

4 RESULTS AND DISCUSSION 

We tested our method on two indoor scenes with numer-
ous specular and glossy reflections. The living room scene 



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID 

 

 

(Figure 1, top and middle rows) has 286K triangles, out of 
which 156K are diffuse and 132K are non-diffuse. The 
bathroom scene (Figure 1, bottom row) has 90K triangles, 
out of which 44K are diffuse and 46K are non-diffuse.  
 
4.1 Quality 

Specular (mirror like) reflections 
As shown in Figure 1 and in the accompanying video, our 
method produces quality specular reflections. Unlike in 
the case of environment mapping, objects close to the re-
flector are reflected correctly, conveying the proximity 
between the reflected and reflecting object. There is no 
reflection discontinuity between clusters because the clus-
ters have a slight overlap, which prevents any gaps, and 
because the reflected rays are continuous over the 
smoothly changing reflector surface, which prevents any 
misalignment of the reflection from cluster to cluster (see 
Figure 7, bottom). 

The reflections rendered with our method are compa-
rable to reflections rendered by ray tracing. Throughout 
this paper and the video, reflections rendered with our 
method are rendered at a resolution of 512 x 512 with uni-
form 2x2 super-sampling (i.e. 1,024 x 1,024 before output 
frame reconstruction); the reflections rendered by ray 
tracing use an equivalent 512x512 output image resolu-

tion with 4 rays per pixel. We use NVIDIA’s Optix ray 
tracer [30]. Figure 8 shows pixel value differences be-
tween our method and ray tracing. The average absolute 
pixel channel differences (i.e, L1 norm) are small, i.e. 6, 3, 
and 9, for each of the three rows, respectively (we use 
eight bit RGB channels with values from 0 to 255).  

One reason for the difference is the large angle be-
tween reflected rays at the reflector edges, which leads to 
minification errors. Another reason for the difference is 
the slightly different sampling of the diffuse objects, 
which produces differences most visible at color edges. 
Our method uses bilinear interpolation of the intermedi-
ate sampling provided by the depth image, whereas ray 
tracing samples the diffuse geometry directly with addi-
tional rays. 

Differences are also caused by surfaces that should be 
visible in the reflection at a cluster but that are not cap-
tured by the cluster depth image. The reflected rays do 
not pass exactly through the cluster camera’s center of 
projection so it can happen that a few reflected rays reach 
surfaces that are not visible to the cluster’s camera. We 
measured the number of pixels per frame where such 
disocclusion errors occur over a sequence of 1,000 frames. 
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Figure 7. Disocclusion errors (red) decreasing as more clus-

ters are used, for the image in the middle row of Figure 1. 

Diffuse pixels are shown in black and only the reflective 

component is shown for non-diffuse pixels. The bottom row 

shows that there are no reflection discontinuities between 

adjacent clusters. 

  

  

  

x 1 x 50 

Figure 8. (Left) Difference images between our method and 

ray tracing for the three rows in Figure 1. (Right) same dif-

ference images with intensities scaled up by a factor of 50. 
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The maximum / average percentage of disocclusion error 
pixels is 1.3% / 0.62% for the living room scene, and 3.5% 
/ 2.75% for the bathroom scene. The disocclusion error is 
controlled by reducing the size of the clusters. The fewer 
the reflected rays that are approximated with a single 
planar pinhole camera, the higher the approximation fi-
delity (Figure 7).  

Finally, when curved reflectors have a small screen 
footprint, the cluster has only one or a few rays, which 
can lead to not finding an intersection between the re-
flected ray and the depth image of the cluster. When an 
intersection is not found, the reflected ray is looked up in 
an environment map (Figure 9). 

Our method approximates the reflected geometry for 
each output frame using depth images, which allows 
adapting the level of detail of the reflected geometry as 
needed for the current frame. The resolution of the depth 
image rendered for a cluster is commensurate with the 
resolution of the cluster of reflected pixels. Figure 10 
shows that a lower resolution for the depth images would 
lead to blurriness (distant part of floor reflected in vase) 
and jagged edges (table leg reflected in floor). 

 

Glossy reflections  
Our approach approximates glossy reflections by in-

tersecting multiple reflected rays with a cluster depth 
image for each cluster pixel. Figure 11 shows that our 
method achieves quality glossy reflections, comparable to 
those obtained by ray tracing. For Figure 11 our method 
uses 8 reflected rays per glossy pixel. Figure 12 shows the 
less noisy but more expensive glossy reflections obtained 
with our method when 49 rays per pixel are used. 

    
Figure 9. Visualization in red of pixels whose reflected rays 
are looked up in an environment map, for Figure 1 (top).  
Diffuse pixels are shown in black and only the reflective 
component is shown for non-diffuse pixels. 

    
Figure 10. Reflections rendered with our algorithm (left) 
and with depth images with 3x3 lower resolution than the 
resolution computed by our algorithm (right).  Diffuse pix-
els are shown in black and only the reflective component is 
shown for non-diffuse pixels. 

  

  

  

Figure 11. Glossy reflections rendered for two glossiness 

levels (left vs. right), with our method and without a diffuse 

component (top), with our method and with a diffuse com-

ponent (middle), and with ray tracing (bottom).  

  

Figure 12. Glossy reflections from Figure 11 now rendered 
with 49 rays per non-diffuse pixel. 
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4.2 Performance 

All performance numbers reported in this paper were 
recorded on a PC workstation with a 3.4GHz Intel(R) 
Core(TM) i7-2600 CPU, with 4 GB of memory, and with 
an NVIDIA GeForce GTX 570 graphics card. 

Specular (mirror like) reflections 
The performance of our method and the comparison to 
ray tracing is given in Table 1. Ray tracing used the 
bounding volume hierarchy acceleration scheme (BVH) 
and the BVH data structure is reconstructed every frame 
as needed for the dynamic scenes. Performance was 
measured on two paths of 900 frames each, through each 
of the two scenes. The scenes contain many reflective sur-
faces and approximately half the pixels in a frame are 
non-diffuse. Our method sustains 10fps for all four paths, 
and it is about 5 times faster than ray tracing for the sim-
pler bathroom scene, and about 10 times faster than ray 
tracing for the more complex living room scene. To ex-
plain the better scalability of our method with scene com-
plexity we breakdown the performance analysis as fol-
lows. 

Table 1. Performance of our method compared to Optix. 

Scene 

Non-diffuse 
pixels [%] 

Optix [fps] Our method [fps] 

max avg max min avg max min avg 

Living 
room 

62 50 1.1 1.0 1.1 25 13 18 

69 58 1.1 0.91 1.0 20 11 15 

Bath-
room 

55 45 3.4 3.1 3.3 20 14 17 

58 44 3.4 3.1 2.3 29 15 18 

Table 2 gives the maximum and average times in milli-
seconds for the main steps of our algorithm (see Section 
3.1). As expected, the first pass, which entails rendering 
the scene geometry with simple shading, and the second 
pass, which entails binning pixels with a simple pass over 
the image, take negligible time. The construction of the 
cluster cameras is expensive, as it requires multiple pass-
es over the pixels in the cluster and concurrent writes for 
the computation of the cluster point, normal, and AABB. 
Rendering the cluster depth images is also laborious as it 
implies a pass over the scene geometry for each cluster. 
Finally, computing the intersection between the reflected 
rays and the cluster depth images takes about half the 
time compared to each of the previous two steps. 

 Table 2. Performance in milliseconds for various algorithm 
steps as defined in Section 3.1.  

S
ce

n
e 

First pass & 
Clustering 
Steps 1 &2 

Camera  
construction 

Step 3.a 

Depth image  
rendering 

Step 3.b 

R-DI inter-
sections 
Step 3.c.i 

max avg Max avg Max avg max avg 

Liv. 
room 

0.9 0.6 30 23 37 26 15 7 

0.8 0.5 28 24 38 28 28 14 

Bath-
room 

0.8 0.5 24 20 39 28 18 11 

0.7 0.5 26 20 30 24 16 8 

The rendering parameters that could affect perfor-
mance are the number of clusters (Table 3), the output 

frame resolution (Table 4), the cluster depth image resolu-
tion (Table 5), and the number of diffuse triangles (Table 
6). Tables 3-6 report average performance for the living 
room scene.  

Our method renders the non-diffuse triangles and par-
titions the resulting non-diffuse pixels into clusters. Con-
sequently, performance does not depend on the number 
of non-diffuse triangles, but only on the number of clus-
ters (Table 3). All steps depend on the output image reso-
lution: for a bigger output image resolution, the first pass 
renders a bigger image, there are more pixels to cluster, 
camera construction handles clusters with more pixels, 
and the resolution of the depth image for each cluster is 
higher which translates to longer depth image rendering 
and reflected ray / depth image intersection times. This 
translates to slower frame rates for higher resolution (Ta-
ble 4). However, the cost is not proportional to the num-
ber of output image pixels—higher output image resolu-
tions do not increase the complexity of the non-diffuse 
geometry, thus the number of clusters remains the same, 
each cluster grouping a larger number of pixels. 

Table 3. Average frame rate for various numbers of clusters. 

Clusters 156 141 123 86 32 

Frame rate [fps] 12 13 15 15 20 

Table 4. Average frame rate for various output resolutions. 

Output  
resolution 

   2,048 x 
2,048 

   1,024 x 
1,024 

512 x 512 256 x 256 

Frame rate [fps] 7.5 15 23 29 

Table 5. Average frame rate for various depth image resol’s. 

Depth image resolution 1/2 x 1/2 1 x 1 2 x 2 

Frame rate [fps] 15 15 14 

Table 6. Avg. frame rate for various numbers of diffuse tris. 

Diffuse triangles [x1,000] 289 162 132 63 

Frame rate [fps] 10 12 15 15 

The frame rate depends very little on the resolution of 
the depth image—forcing the resolution to be half or 
twice as much as the resolution computed by the algo-
rithm does not change the frame rate substantially (Table 
5). For the steps in Table 2, only the last two depend on 
the depth image resolution. Step 3.b depends on the 
number of passes, i.e. the number of depth images, and it 
depends little on the resolution of individual depth imag-
es. Step 3.c.i requires substantially less time than Step 3.b, 
thus the variable number of steps along the projection of 
the reflected ray onto the depth image (Section 3.4) has 
little influence on the overall frame rate. The number of 
diffuse triangles only affects Step 3.b, and reducing the 
number of diffuse triangles benefits overall performance 
(Table 6) until the cost of Step 3.b is too small compared 
to that of Step 3.a. 

We can now explain why our method scales better 
with scene complexity than ray tracing. For our method, 
clustering, cluster camera construction, and reflected ray 
depth image intersection mainly depend on output image 
resolution. Because of this, simple scenes (e.g. the Cornell 
box) rendered at high resolution will be handled faster by 
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ray tracing. Whereas depth image construction does de-
pend on scene complexity, the two scenes are still simple 
enough for depth image construction to take roughly the 
same amount of time (Table 6). This is not the case for 
BVH construction needed by ray tracing, which takes 
substantially longer for the living room scene (910ms) 
compared to the bathroom scene (260ms). Our method 
depends on the number of clusters (Table 3), which is 
similar for all four paths used for Table 1, as shown in 
Table 7. In conclusion, our method scales better with dif-
fuse scene complexity than ray tracing because the con-
ventional GPU rendering of the cluster depth images 
scales better than the construction of the acceleration 
structure needed for ray tracing. 

Regarding the dependence on reflector complexity, our 
method handles optimally planar reflectors, which are 
frequently encountered in man-made scenes, and ray 
tracing does not. Complex reflectors, with high curvature 
and high fragmentation are challenging for both our 
method and ray tracing: they imply a large number of 
clusters for our method, and ray tracing has to filter the 
reflected geometry by shooting tens or hundreds of rays 
per pixel. Our method filters geometry at a much lower 
cost during cluster depth image rendering. Both our 
method and ray tracing are intended for large reflectors 
that produce coherent reflections; environment mapping 
should remain the approach of choice for very high com-
plexity reflectors, where it is difficult to judge reflection 
accuracy and hence the additional cost is not justified. 

Table 7. Number of clusters for the four paths in Table 1. 

 Living room Bathroom 

Avg. no. of clusters 148 120 123 107 

Max. no. of clusters 195 162 194 158 

Glossy reflections 

The difference between rendering perfectly specular, mir-
ror-like reflections and rendering glossy reflections con-
sists of intersecting the cluster depth image with multiple 
reflected rays for each glossy pixel. However, the perfor-
mance implication is that, in addition to having to inter-
sect multiple rays, it is also the case that each intersection 
is more expensive. Whereas the pinhole camera con-
structed for a cluster approximates the one-per-pixel 
specularly reflected rays well, glossy reflected rays are 
markedly divergent from the cluster camera rays. Because 
of this, the length of the segment where a glossy ray pro-
jects onto the depth image is longer, leading to more steps 
for finding the intersection. The glossier the surface (i.e. 
the more matte and the less mirror-like), the more diver-
gent the rays, and the higher the ray / depth image inter-
section cost. Glossy rendering performance is given in 
Table 8. The frame rate is lower compared to that for mir-
ror-like reflections, but the advantage over ray tracing is 
maintained. Higher performance more approximate 
glossy reflections can be obtained by intersecting a single 
ray with the cluster depth image and averaging samples 
in a neighborhood centered at the intersection. 
 

Table 8. Performance for glossy reflections in Figure 11. 

Glossiness level 

Rays 
per 

pixel 

Intersec-
tion time 

[ms] 

Frame rate [fps] 

Optix Our method 

More specular 
8 112 1 6 

49 651 0.4 1.4 

More matte 
8 163 1 5 

49 814 0.4 1.1 

In terms of memory requirement, the algorithm scales 
well since the cluster depth images do not have to be 
stored in memory simultaneously—the memory is reused 
as soon as the reflection for a cluster is completed. The 
total amount of GPU memory required for rendering the 
512x512 reflections shown here is 87MB, most of which 
(i.e. 64MB) is used for the framebuffer with position, 
normal, cluster ID, and color channels. 

4.3 Implementation notes 

The first rendering pass that finalizes the diffuse pixels 
and initializes the non-diffuse pixels (step 1 in Section 3.1) 
is done on the GPU with a straightforward shader. Non-
diffuse pixel clustering (step 2) is also done with a GPU 
shader, since a pixel is assigned to a cluster using only the 
information at the pixel, and no information from neigh-
boring pixels.  

Cluster camera construction (step 3.a) requires concur-
rent writes (e.g. for the computation of the cluster cen-
troid, normal, and AABB of sample projections) and we 
perform the step on the GPU in CUDA using shared 
memory and atomic operations. The number of costly 
atomic operations is reduced whenever possible by using 
regular operations to determine a good initial guess. For 
example, when searching for a maximum element in an 
array, running the algorithm without atomic operations 
will return one of the larger elements of the array. This 
element is then used to initialize the maximum for the 
rigorous version of the algorithm that employs atomic 
operations. Since this initial value is only smaller than a 
few of the elements of the array, the maximum will only 
be updated a few times, saving most atomic operations 
that occur if the maximum is initialized with the custom-
ary first element. 

Depth image rendering (step 3.b), and finalizing the 
non-diffuse pixel colors which includes reflected ray / 
depth image intersection (step 3.c) are performed on the 
GPU. For step 3.b view frustum culling at object level is 
used, and for step 3.c intersections for planar reflectors 
are immediate since the projection of the reflected ray is a 
single point, i.e. the intersection point (see cluster camera 
construction in Section 3.3). Handling planar reflectors 
correctly (no disocclusion errors) and efficiently (planar 
reflectors are detected automatically in the output frame 
and only the reflection for the visible part of each planar 
reflector is computed) is an important strength of our 
method since planar reflectors are frequently encountered 
in man-made scenes (Table 9). 
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Table 9. Percentage of non-diffuse pixels that belong to pla-
nar reflectors for the four paths in Table 1. 

 Living room Bathroom 

Planar reflector non-
diffuse pixels [%] 

Avg 41 33 17 20 

Max 52 51 33 34 

4.4 Limitations 

As discussed above, our method resorts to several ap-
proximations. First, the reflected rays are approximated 
by fitting a conventional planar pinhole camera to each 
cluster. The smaller the cluster, the better the pinhole’s 
ray approximate the actual reflected rays. Since the image 
captured by the pinhole is not used directly to form the 
reflection, the approximation only has a second order 
effect on the correctness of the reflection. In other words, 
the reflection is not distorted, and the samples captured 
by the pinhole are reflected correctly by computing the 
intersection with the reflected ray. However, the pinhole 
does not capture all samples captured by the actual re-
flected rays, which leads to disocclusion errors as dis-
cussed.  

A second approximation is that the reflected geometry 
is replaced with a depth image, which introduces an in-
termediate resampling of both geometry and color. The 
effects of this approximation are mitigated by increasing 
the resolution of the depth images. The third approxima-
tion consists of looking up into an environment map the 
reflected rays generated by non-diffuse pixels of small 
clusters (e.g. silhouette pixels in Figure 9). 

Our method is best suited for mirror-like reflections 
with one ray per pixel, because glossy rays cannot be ap-
proximated well by the cluster cameras, and intersecting 
a glossy ray with the cluster depth image is more expen-
sive. 

Our method requires one rendering pass for each clus-
ter to render the cluster’s depth image. These passes can-
not be avoided as one has to follow the reflected rays to 
capture the reflected samples.  A cluster camera is con-
structed with the smallest field of view that encompasses 
the reflected rays of the cluster. The depth images are 
non-redundant, except for instances when the same part 
of the scene is reflected more than once, and except for a 
small overlap at the borders that ensures reflection conti-
nuity between neighboring clusters.  

Performance scalability with diffuse scene complexity 
has to be sought along the lines of reducing the cost of 
these passes. Partitioning scene geometry with a hierar-
chical subdivision scheme is of course an option, but that 
is not suitable for dynamic scenes. Another possibility is 
to improve the clustering scheme, which in its present 
form emphasizes efficiency at the cost of unnecessarily 
numerous clusters. K-means clustering based on k-d trees 
[42] would result in fewer clusters and we will investigate 
whether that brings a performance gain sufficient to offset 
the cost of the slower clustering. We will also investigate 
grouping clusters with cameras whose frusta are disjoint 
and rendering one compound depth image for each 
group in a single pass. 

Our method achieves second-order feed-forward ren-

dering, with first order rays being the rays leaving the 
output image eye. This means that our method supports 
only first-order reflections. When a reflected ray intersects 
a reflective surface, the ray color is simply set to the dif-
fuse component of the surface. Higher-order reflections 
also occur in the case of concave reflectors, which can 
reflect a ray multiple times until the ray escapes the re-
flector to sample the environment. We handle concave 
reflector clusters in one of two ways. One way is to han-
dle concave clusters like the convex clusters—reflected 
rays are intersected with the cluster depth image, ignor-
ing the second intersection with the reflector surface 
sampled by the cluster. Another way is to detect that a 
cluster is concave, by testing whether the center of a clus-
ter is behind the image plane of the camera cluster, and 
then to intersect reflected rays with the cluster itself to 
detect a possible second intersection. When such a second 
intersection occurs, the ray color is set to the diffuse com-
ponent of the cluster sample. None of the two methods 
provide the accurate second order reflection, but the sec-
ond method provides a more stable reflection, at the 
small additional cost. 

Finally, our method brings the most benefit close to the 
specular end of the specular-glossy-diffuse continuum. A 
narrower reflection cone per reflective surface point re-
sults in more coherent reflected rays that are well approx-
imated by a cluster pinhole camera and requires fewer 
ray / depth image intersections per pixel. When moving 
towards the diffuse end of the surface reflectance contin-
uum, the ray coherence decreases and the cluster cameras 
become panoramas with fields of view that encompass 
the sum of the upper hemispheres of the cluster pixels. 
Clustering based on normals does not pay off anymore as 
the reflected rays at a point become indifferent to the 
point’s normal. We have shown that our method achieves 
good results for specular reflections and that it can also 
handle high glossiness. Supporting low glossiness or dif-
fuse reflections require a different strategy for approxi-
mating the reflected scene geometry. 

5 CONCLUSIONS AND FUTURE WORK 

We have presented a method for rendering specular and 
glossy reflections that achieves quality reflections at in-
teractive rates. No pre-computation is required which 
supports fully dynamic scenes at substantially higher 
frame rates than a ray tracer that has to reconstruct its 
acceleration data structure for every frame. Our method 
readily works with normal-mapped reflectors (Figure 13). 

Compared to methods that approximate the projection 
of reflected vertices such as the explosion map [27], our 
method has the advantage of better scalability with reflec-
tor complexity and of handling multiple reflections at no 
extra cost. Our method can handle complex reflectors 
because it does not attempt to provide a constant time 
solution to the problem of projecting reflected vertices. 
Instead, the reflected scene vertices are first mapped to a 
depth image to which reflected rays are then mapped. 
The reflected ray to depth image mapping implies a 
search, which is more expensive than the constant time 
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explosion map projection, but which makes complex re-
flectors tractable. The search is confined to the 1-D projec-
tion of the ray to the depth image, which bounds the cost 
to the resolution of the depth image. 

Compared to image based rendering and caching 
methods, our method does well for specular reflections 
which require a high image or cache resolution that 
makes them expensive to construct and search. Our 
method compresses the specular reflection data well lev-
eraging the reflected scene geometry. Compared to other 
methods based on approximating the reflected scene, our 
method has the advantage of approximating only the part 
of the scene needed for the reflections in the current 
frame. The approximation fidelity is tailored to the needs 
of the current frame. Compared to environment mapping 
our method is more accurate and compared to methods 
that rely on view independent approximations of reflect-
ed geometry our method is more efficient, enabling appli-
cations involving dynamic scenes. 

Our method achieves interactive rates on complex re-
flections. Applications where frame rate is the main de-
sign consideration could reserve the use of our method to 
a subset of the reflective surfaces in a scene. We foresee 
that the advantage of our method over ray tracing will 
increase as graphics hardware progresses, since we map 
well to the GPU’s strength of rendering by projection fol-
lowed by rasterization. 

In addition to the future work directions sketched in 
Section 4.4, the number of clusters could be reduced by 
replacing the conventional planar pinhole camera used to 
approximate the reflected rays of a cluster with more 
powerful, non-pinhole camera models that can conform to 
larger sets of more diverse rays.  

Our method demonstrates that today’s hardware im-
plementation of the feed-forward graphics pipeline is 
sufficiently versatile and prolific to compute not only the 
color samples captured by first order rays leaving the eye, 
but also the samples captured by second order rays. In 
the context of our paper, the second order rays were cre-
ated by reflective surfaces, but, in future work, our meth-
od could be extended to other types of rays.  
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